Factor analysis and SVM for language recognition

نویسندگان

  • Florian Verdet
  • Driss Matrouf
  • Jean-François Bonastre
  • Jean Hennebert
چکیده

Statistic classifiers operate on features that generally include both, useful and useless information. These two types of information are difficult to separate in feature domain. Recently, a new paradigm based on Factor Analysis (FA) proposed a model decomposition into useful and useless components. This method has successfully been applied to speaker recognition tasks. In this paper, we study the use of FA for language recognition. We propose a classification method based on SDC features and Gaussian Mixture Models (GMM). We present well performing systems using Factor Analysis and FA-based Support Vector Machine (SVM) classifiers. Experiments are conducted using NIST LRE 2005’s primary condition. The relative equal error rate reduction obtained by the best factor analysis configuration with respect to baseline GMM-UBM system is over 60 %, corresponding to an EER of 6.59 %.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مقایسه روش های طیفی برای شناسایی زبان گفتاری

Identifying spoken language automatically is to identify a language from the speech signal. Language identification systems can be divided into two categories, spectral-based methods and phonetic-based methods. In the former, short-time characteristics of speech spectrum are extracted as a multi-dimensional vector. The statistical model of these features is then obtained for each language. The ...

متن کامل

A COMPARATIVE ANALYSIS OF WAVELET-BASED FEMG SIGNAL DENOISING WITH THRESHOLD FUNCTIONS AND FACIAL EXPRESSION CLASSIFICATION USING SVM AND LSSVM

This work presents a technique for the analysis of Facial Electromyogram signal activities to classify five different facial expressions for Computer-Muscle Interfacing applications. Facial Electromyogram (FEMG) is a technique for recording the asynchronous activation of neuronal inside the face muscles with non-invasive electrodes. FEMG pattern recognition is a difficult task for the researche...

متن کامل

Bhattacharyya-based GMM-SVM system with adaptive relevance factor for pair language recognition

In this paper, we develop a hybrid system for pair language recognition using Gaussian mixture model (GMM) supervector connecting to support vector machine (SVM). The adaptation of relevance factor in maximum a posteriori (MAP) adaptation of GMM from universal background model (UBM) is studied. In conventional MAP, relevance factor is empirically given by a constant value. It has been proven th...

متن کامل

Object Recognition based on Local Steering Kernel and SVM

The proposed method is to recognize objects based on application of Local Steering Kernels (LSK) as Descriptors to the image patches. In order to represent the local properties of the images, patch is to be extracted where the variations occur in an image. To find the interest point, Wavelet based Salient Point detector is used. Local Steering Kernel is then applied to the resultant pixels, in ...

متن کامل

Face Recognition using Eigenfaces , PCA and Supprot Vector Machines

This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009